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Bungee Cord Danger Analysis*
by Dennis B. Brickman1, Ralph L. Barnett2,  and Harry R. Smith3

ABSTRACT
The utility of bungee cords is so persistently attractive that they continue to gain in popularity.

Unfortunately, one of the characteristics of bungee cords is the sudden release of stored
energy which results from opening of hooks, failure of the bungee cord and hook connection,
inadvertent release of the bungee cord during application, and failure of the structure receiving
the hook.  Each of these failure modes allows the free end of the bungee cord to attain high
speeds which produce injuries through impact.  The design of personal protection equipment
and the evaluation of the danger level related to a released bungee cord require information on
hook speed.  This paper presents a first order analysis of the maximum attainable speed.

INTRODUCTION
The popularity of bungee cords for restraining light loads has been observed in  applications

where they:
1. Hold down trunk lids when cargo bulk is excessive.
2. Hold down tarps which protect boats, campers, pickup trucks, and lading on flat bed trucks.
3. Restrain cargo.
4. Hold items in place temporarily.
5. Apply temporary clamping force (e.g., adhesive applications).
6. Act as barriers.

The utility of the bungee cords is particularly attractive since the hooks act as an extremely
versatile connector which can be easily applied with one hand.

The sudden release of stored energy associated with the bungee cord leads to a high speed
flailing hazard in the following failure modes:

1. Hook pulls out of user’s hand in stretching phase.
2. Hook becomes disengaged from attachment point.
3. Attachment structure fails.
4. Hook straightens out.
5. Cord breaks.
6. Hook detaches from cord.

Injuries associated with the bungee cord have been documented by the U.S. Consumer
Product Safety Commission (CPSC) through the National Electronic Injury Surveillance
System (NEISS) [1].  Additional information may be found in the medical and safety
literature [2-7].

The selection of personal protection equipment and the danger assessment related to
a released bungee cord require information on the maximum speed at which one can be
hit by the hook. This paper presents a first order analysis of the maximum hook speed of
a released  bungee cord.  A test fixture has been designed and constructed to measure the
maximum hook speed.
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FIRST ORDER ANALYSIS
The static behavior of tension members, and specifically

bungee cords, may be characterized by their load-deflection
diagrams.  Figure 1 illustrates a typical load-deflection relationship
during the loading and unloading phases of the bungee cord.  The
area under the top (loading) curve represents the total energy
required to stretch the cord from its unloaded length to the final
elongation of interest; this is called toughness and will be
designated as T.  The area under the lower (unloading) curve
represents recoverable or elastic energy obtained when the cord is
completely unloaded; this is called resilience and will be
designated as R.  In this paper, T and R will be measured in in.-lb.
The positive difference between these two areas, T – R, will be
termed hysteresis and represents the energy lost to heat during the
load/unload cycle.

An elongated bungee cord is a two-force member; the two
hooks are being pulled together along a straight line between the
attachment points.  When one hook is released, it will be
accelerated toward the fixed hook until it achieves its unstretched
length where the pull force drops to zero.  At this point it is assumed
that all of the recoverable energy R will be used to produce kinetic
energy in the cord.  This energy may be approximated as

where W
h
 is the weight of the hook and any attachment devices

such as knots and clips, W
c
 is the weight of that portion of the

bungee cord that lies between the hooks, v
h
 is the hook speed, and

g is the acceleration due to gravity (386.4 in./sec2).  It should be
noted that the contribution of the cord weight to the kinetic energy

is taken as one third of its actual weight. This classic relationship is
discussed by Timoshenko [8] where it is assumed that the velocity
of any cross-section of the cord at a distance c from the fixed end
is the same as in the case of a massless cord, i.e.,

c

L
vh

where L is the unstretched length of the cord between the hooks.
The factor follows immediately from this assumption.

Equating the kinetic energy to the resilience R gives:

v
gR

W
Wh

h
c

=
+

2

3
Real cords use up energy through air resistance, stress waves,

and dissipation in the release mechanism. Consequently, Eq. 2 may
be regarded as an upper bound on the achievable hook speed.

RESILIENCE
When bungee cords are used, they are typically stretched and

fastened between two fixed points. This implies that the elongation
of the cord is an independent variable and that the resulting
resistance to this stretching is a dependent variable.  The
associated load-deflection curves are the type normally obtained
using universal testing machines.  Because of the considerable
stretching associated with bungee cords, testing often proceeds
by elongating the cord horizontally and measuring the resistance;
this method was employed in the paper using the test set-up
shown in Fig. 1. Ten nominally identical three foot bungee cords
with a 0.375 in. diameter were tested using an 18 in. elongation

Fig. 1  Test Set-Up and Load-Deflection Diagram
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Eq. (2)

Kinetic Energy  ˙ =

Unloading

T - R

R = 94 in.-lb.

0 2 4 6 8 10 12 14 16 18
0

1

2

3

4

5

6

7

8

9

DEFLECTION (IN.), ∆L

LO
A

D
 (L

B
) T = 116 in.-lb

Loading

������
SCALEDYNAMOMETER

3 in. 3 in.

0.5 in. (Typ.)

L

∆L

1

2 3
2

g
W

W
vh

c
h+







3

Screw
Adjustment

Plate

Bungee Cord

Instrumentation

Sensor
Adjustment

Plate

Release Mechanism

Start / Stop
Sensor Array

�
�

Bungee Cord

Hook

Sensors

Typ. = 1 in.

Wand (Length = 3 in.;
Weight = 0.3 grams)

�
�
�
�
�
�
�

�@�À�

Fig. 2  Speed Test Set-up
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Fig. 3  Typical 3 foot Bungee Cord

1 Omron Model E3X-All fiber optic amplifier, Omron Model E32-TC200 fiber optic
cable, and Newport Model P5000A timer.

(50% of the total cord length including the two hooks).  Each cord
was prestretched five times to an 18 in. elongation. The associated
values of T and R are tabulated in Table 1 together with their
hysteresis.

SPEED TESTS
Using the test set-up shown in Fig. 2, a stretched bungee cord

was propelled upward through sets of sensors1 vertically spaced
on one inch centers in the neighborhood of the unstretched cord
deployment.

Calculations of the hook speed were made for the bungee cord
illustrated in Fig. 3.  The weight of the cord within the 30 inch length
is typically W

c 
= 0.06897 lb; the weight of the hook, knot, staple, and

wand shown on the left hook averaged W
h = 0.06582 lb.  Using this

data, Eq. 2 becomes:

v
R

h = ( )
+

2 386 4

0 06582
0 06897

3

.

.
.

For trial one, R = 94 in.-lb and v
h = 51.3 mph.  The predicted or

calculated speeds for the ten bungee cords tested are tabulated
in Table 1.

CONCLUSIONS
1.  Equation 2 represents a first order analysis of hook speed

which gives an upper bound and a close estimate. Our
findings indicate that predictions are approximately 8.8%
too high for 50% elongation stretch.  Actual values of hook
speed depend on the exact manner of their release and on
the load-deflection history of the cord.  For these reasons,
it does not appear useful to refine the estimate of Eq. 2.

2.  Safety eyewear with tempered glass lenses is required by ANSI
Z87.1-1989 to survive an impact of a 1 in. diameter steel ball
dropped 50 in. [9].  The associated energy  level is 7.409 inch
pounds which is 8% of the available energy released by a
bungee cord under its design environment of 50% stretch.

3.  Hook speeds of 45 to 49 mph are developed for three foot
bungee cords under design use  conditions and it is clear that
the eye cannot resist this loading environment.  Indeed, the
majority of bungee cord accidents involve the eye.

4. Given the high hook speeds and high energy levels,
manufacturers should continue to recommend stretching
strategies which remove a user’s eyes from the hook trajectory.
A typical on-product warning is shown in Fig. 4.
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Fig. 4  On-Product Warning Label
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MUST READ BEFORE USE
1.Secure hook ends carefully.   2. Do not overstretch cord. 50%
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potential cord rebound path.  4. Do not use to hold any surface
which reacts to wind or air movement.
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Table 1  Bungee Cord Hook Speed and Strain Energy
(Length = 36 in.; Diameter = 0.375 in.; Elongation = 18 in.)

Trial No. Toughness
  T (in.-lb)

Resilience
 R (in.-lb)

Hysteresis
      T–R
         T

  Measured
Hook Speed
   vh (mph)

 Calculated
Hook Speed
   vh (mph)

19.0%

18.1%

17.5%

18.0%

17.9%

19.6%

18.4%

16.5%

17.3%

18.1%

18.0%

47.3

45.5

48.0

48.9

45.5

45.3

45.1

45.8

47.3

45.3

46.4

94

86

94

100

87

90

84

96

91

86

91

116

105

114

122

106

112

103

115

110

105

111

1

2

3

4

5

6

7

8

9

10

Average

51.3

49.1

51.3

53.1

49.5

50.4

48.6

51.9

50.7

49.1

50.5


