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ABSTRACT

One of the more important collapse modes for straight, combination, and extension
ladders is base slide out; the top of the ladder slides down the support wall as the base slips
away from it.  Various fundamental models have been used to study this behavior.  This
paper revisits the analytical solutions associated with these models and describes their
implications for the analysis, design, and testing of ladders.

I. INTRODUCTION

   The geometry and  general  loading of  a
typical straight, extension,  or combination
ladder  is shown in  Fig. 1  for  an  angle of
inclination θ.   In the United States of America,
the  recommended  angle  of inclination θ ∗

corresponds to a  ladder set-up with
c/L = 1/4 or,

θ * cos .= =− °1 1
4

75 52 Eq. 1

    Several   versions  of   static   equilibrium
analysis are applied to the ladder in the ap-
pendix.    The most important finding is the
following  “no-slip”  relationship among the
various ladder parameters:

Price: $25.00

Fig.1  Ladder Geometry and General Loading
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Fig. 2  Analysis Models

a) Mathematical Model b) Free Body Diagram
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No-Slip Criterion:

Eq. 2

where

....coefficient of friction between the base and the ladder
    foot.

....coefficient of friction between the wall and the ladder
    top.

....total weight of gravity loading, i.e.,

....i th gravity force.

....location of the i th gravity force measured from the
    ladder base.

....extended ladder length.

....angle of ladder inclination.

....horizontal pulling force – Foot Slip Tests, ANSI A14.2.

The implications of this inequality to ladder technology will be
explored in the following sections covering ladder safety analy-
sis and ladder testing.

To arrive at Eq. 2, the physical model of the ladder illustrated
in Fig. 1 is idealized by the mathematical model described in Fig.
2a showing a rigid rod hinged at both ends.  A free body
diagram, Fig. 2b, is then used to establish equilibrium equa-
tions.  The free body diagram distinguishes between the loading
forces, Wi and  P, and the respective horizontal and vertical
reactions at the top and base of the ladder; H

t 
, H

b 
, V

t
, and V

b
.

Table I summarizes the force analyses given in the appendix.

If we designate the center of the gravity forces as a , then
the moment of the total gravity force W about the ladder base
is Wa( )cosθ  and this, by definition, is equal to the sum of the
individual moments of gravity forces,

Wiai
i=1

n

∑





cosθ

a
W

W
ai

i

n

i≡ 





=
∑

1

where

W Wi

i

n

≡
=
∑

1

µb ≥
µ t + tan θ( ) P

W
+ Wi

W






ai

L






i=1

n

∑
µ t + tan θ( ) − µ t

Wi

W






ai

L






i=1

n

∑

Table I  Reaction Forces and Non-Slip Criteria

W = Wi

i=1

n

∑
W

Wi

ai

L

θ

P

µb

µ t

Thus,

Eq. 3

Eq. 8 µ
b 
:          Not Applicable            µb ≥

a

L






tanθ
+ P

W
      µb ≥

µ t + tan θ( ) P

W
+ a

L






µ t + tan θ( ) − µ t
a

L





     µb =

µ t + tan θ( ) P

W
+ a

L






µ t + tan θ( ) − µ t
a

L






    µb ≥
µ t + tan θ( ) P

W
+ a

L






µ t + tan θ( ) − µ t
a

L






     µb ≤

a

L






tan θ

Eq. 4 V
t  
=    W

a

L




 − Hb − P( ) tan θ         0                     Wµ t

a

L






µ t + tanθ



















      W
a

L




 − µb tan θ





+ P tanθ

1 − µb tan θ

Eq. 7 H
b 
=           Unknown

       

W
a

L






tanθ
+ P           W

a

L P
t







+



















+
µ θtan

       µb

W 1 − a

L




 − P tanθ

1 − µb tan θ

Eq. 6 H
t 
=            H

b
 - P    

W
a

L






tanθ
          W

a

L






µ t + tan θ



















          
Wµb 1 − a

L




 − P

1 − µb tan θ

No Incipient
Slipping

Eq. 5 V
b 
=  W 1 − a

L




 + Hb − P( ) tan θ        W        W

µ t 1 − a

L




 + tanθ

µ t + tanθ



















                     
W 1 − a

L




 − P tanθ

1 − µb tan θ

Equations Eq. a Eq. b Eq. c Eq. d Eq. e

Incipient Slipping

Roller at
Ladder Top

Wall
First

Definition

a

L




 ≡ Wi

W






i=1

n

∑ ai

L






Base
First

Simultaneous:
Wall and Base
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When there is only one concentrated force on a ladder, n = 1,
and a = a

1
 with W = W1.  When the center of gravity forces a  is

used in Eq. 2, µ
b
 takes the forms shown in Eq. 8 in Table I.  All of

the reaction equations given in Table I are written for a single
equivalent concentrated force W located at a from the ladder
base.

II. LADDER SAFETY ANALYSIS

The various equations presented in the Introduction contain
the pull out force P which is associated with ladder testing.
This force is not present when climbing a ladder; hence, P will
be taken as zero throughout this section.  Ladders may col-
lapse by “slide out,” by telescoping inward, or by beam-col-
umn failure.  It will be demonstrated that only the “slide out”
problem is under control; telescoping analysis and beam-col-
umn analysis require a knowledge of the axial forces on the
ladder and this in turn demands that the wall and base reaction
forces be known. These reactions, as it turns out, are elusive.
On the other hand, bending moments on the ladder can al-
ways be determined since it is a simply supported beam.

In the following presentation, both “slide out” variables and
ladder reactions will be studied for specific cases.

A. Non-Critical Ladder - No Incipient Sliding

For the ladder illustrated in Fig. 1 there are four unknown
reaction forces acting at the top and bottom of the ladder rails;
V

t 
, V

b 
, H

t 
, and H

b
.  Unfortunately, there are only three available

equilibrium equations which, by themselves, cannot determine
these four unknowns.  On the other hand, if one pretends to
know one of the reactions, say H

b
, then the others can be writ-

ten in terms containing H
b 
as shown in Eqs. 4a, 5a, and 6a.

Physically, H
b 
will take on different values every time the ladder

is set up and climbed.

For easy visualization, picture a climber of weight W ascend-
ing a weightless ladder to location a  measured from the base.
Using P = 0 in Table I, one obtains:

Vt = W
a

L




 − Hb tan θ Eq. 9a

Vb = W 1 − a

L




 + Hb tan θ        Eq. 9b

Ht = Hb        Eq. 9c

These equations are also valid for any equivalent force W with
a center of loading at a .

The directions of these reactions are shown in Fig. 2b.  They
are determined from the physical observations that the wall
and base cannot pull on the ladder rails and that sliding will be
resisted by upward friction forces at the wall and by inward
friction  forces at the base.  The requirements that H

b
 ≥ 0 and

V
t
 ≥ 0 limit the range of possible values of H

b
 to

0 ≤ Hb ≤
W

a

L






tanθ
      Eq. 10

This, in turn, bounds the remaining reactions through
Eq. 9; thus,

0 ≤ ≤ 



V W

a

Lt      Eq. 11a

W 1 − a

L




 ≤ Vb ≤ W      Eq. 11b

0 ≤ Ht ≤
W

a

L






tanθ
     Eq. 11c

Axial forces acting on the top and bottom of the ladder rails
will be designated A

t
 and A

b
 respectively.  Each of the reaction

forces has  axial components that make up A
t
 and A

b
 as shown

in Fig. 3; thus,

A H Vt t t= −cos sinθ θ      Eq. 12a

A H Vb b b= +cos sinθ θ Eq. 12b

The range of values possible for these axial forces may be es-
tablished using Eqs. 9 and 10; thus,

  
− 





≤ ≤

























W
a

L
A W

a

L
tsin sin

tan
θ θ

θ2

W
a

L
A W

a

L
bsin sin

tan
θ θ

θ
1 1 2−





≤ ≤ +

























Fig. 3  Axial Rail Forces, A
t
 and A

b

Eq. 13

Eq. 14

Ht

Vt

Hb

At

Ab

θ

θ

θ

Vbθ

θ
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Observations

1. Most ladder problems fall into the non-critical category since
ladders are erected at an inclination in the neighborhood of

      θ
∗ 
= 75.52 .̊  This angle is adopted by ladder manufacturers

when determining acceptable levels of friction against slid-
ing.

2.  The three available equilibrium equations cannot uniquely
determine the four ladder reactions; an additional physical
relationship among the reactions is required.  Without the
associated “fourth equation”, one can merely bound the
reactions and the axial forces as indicated in Eqs. 10, 11,
13, and 14.  The upper and lower bounds are close only
when the climber (center of force)  is near the bottom of the
ladder (at a /L = 0 they are identical).

3.  The maximum achievable values for the reactions and axial
forces are given by the upper bounds of the Eqs. 10, 11,
13, and 14 when the climber (center of force) is at the top,
i.e., a /L = 1 and θ = θ∗:

V
t
 = W

V
b
 = W

H
t
 = 0.258 W

Upper Bounds H
b
 = 0.258 W

A
t
 = 0.0646 W (compression)

A
t
 = 0.9682 W (tension)

A
b
 = 1.0328 W (compression)

When ladder stabilizers are designed to attach  to  the  top
of the ladder,  the maximum horizontal force   H

t
 = 0.258W

and the maximum vertical force V
t
 = W  must be consid-

ered.  They don’t achieve the maximum values simulta-
neously, maximum V

t  
is associated with the smallest H

t
,

i.e., zero (see Eq. 9a).

There is a widespread belief among ladder professionals
     that the higher one climbs the more critical the ladder be-
     comes.  It’s true.

4.  Because the axial force A
t
 on the top of a ladder can be-

come tensile, an extension ladder may experience an un-
latching force between the fly and base sections.  The maxi-
mum tension is given by the lower bound in Eq. 13, i.e.,

W
a

L




 sinθ ...max. tension

     Using the ladder set-up shown in Fig. 17 of the American
National Standard A14.2–1990 (see our Fig. 4), the largest
unlatching force occurs when the climber (center of force)
stands as high as possible on the base section;

               (a /L )= (4.5)/13:

W W
4 5

13
75 52 0 335

.
sin . .



 =            (Fly on Top)

If the ladder is flipped over so that the fly section is on the
bottom, the climber may stand on the base section with

a /L  = (7.5)/13 :

W
7.5
13





 sin 75.52 = 0.559W            (Fly on Bottom)

Clearly, it’s better to have the fly section on top; however,
both values are disturbingly large.  If the combined climber
and ladder weigh 230 lbs, the “fly on top” gives an A 

t
 = 77

lbs., and the “fly on the bottom” gives an A 
t 
= 129 lbs.  These

forces may play a role in developing latch locks or, per-
haps, in the unlatching of very flexible extension ladders.

5.  Structural engineering would characterize the ladder model
described in Fig. 2 as statically indeterminate or hyperstatic
to the first degree since equilibrium supplies only three equa-
tions for determining four unknown reactions.  Structural
theory uniquely establishes all four reactions by supplying
a fourth equation based on a geometric concept called com-
patibility.  Here, the ladder and hinge supports are treated
as flexible entities that must stay attached after being de-
formed by the gravity and reaction forces.  Unfortunately,
the flexibility of the top and bottom surfaces cannot be ac-
counted for because of their elusive and fickle nature.  In-
deed, the reactions will take on different values even when
ladder set-ups are nominally identical.

6.  If incipient or real sliding takes place at one of the ladder
support surfaces, this physical condition produces a fourth
relationship among the reactions that allows a complete
and unique characterization of V

t 
, V

b 
, H

t 
, H

b 
, A 

t 
, and A

b
.

     Otherwise they remain random, albeit bounded.

7.  The random nature of the reactions may lead to incipient
sliding at either the base or the wall.  The present analysis
gives no indication where it will first occur.

B. Roller Top Ladders (Frictionless Wall)

If the wall is contacted by rollers, no vertical resistance is
available to support the top of the ladder.  This physical fact
provides the “fourth equation” required to uniquely determine
the four reaction forces:

Vt = 0 Eq. 15a

Vb = W  Eq. 15b

Ht = Hb = W

a

L






tanθ
Eq. 15c

Here, the “no slip” criterion is

µb ≥

a

L






tanθ
Eq. 16

where we observe that the normalized center of force ( a /L )
has been used to simplify the summation expression used
throughout the appendix, i.e.,

...no slip criterion
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a

L




 = Wi

W






i=1

n

∑ ai

L






Observations

1.  This simple case is the only one where the reaction forces
are always known before and at incipient slipping of the
base.  When slipping occurs, dynamic forces take over the
problem.

2.  For a weightless ladder that is ascended by a climber of
weight W, ( a /L ) may range from zero to unity as the climber
moves from the base to the very top.  When an unloaded
real ladder is considered, its center of gravity is near the
middle, a /L  ≈ 1/2. When this weight is combined with that
of a climber, the center of force of the combined loading
can never be exactly at the bottom or exactly at the top
even when the climber is all the way at the bottom or top of
the ladder.  Using the subscript  c  for the climber and   l  for
the ladder, observe that the center of force may be written
as,

  

a

L




 = Wc

W






ac

L




 + Wl

W






al

L




 Eq. 17

     where

  
0 < al

L




 < 1

0 ≤ ac

L




 ≤ 1

      when

  

ac

L




 = 0,

a

L




 = Wl

W






al

L




 ≠ 0

      and when

  

ac

L




 = 1,

a

L




 = Wc

W
+ Wl

W






al

L




 < Wc

W
+ Wl

W
= 1 Eq. 18b

Q.E.D.

3.  Equation 15c indicates that the largest values for the hori-
zontal reaction forces occur when ( a /L ) is as large as pos-
sible.  Since it was just established that ( a /L ) < 1, we may
choose unity to provide a conservative upper bound on the
reactions; thus,

  

Ht = Hb < W

tan θ
= 0.258W

θ = 75.52o

4.  To assure that a ladder will not slip during general usage,
the base friction µ

b
 must be selected for the worst case

scenario, i.e., for ( a /L ) as large as possible.  Using the
upper bound on the center of force, a /L  = 1, a conserva-
tive “no slip” criterion is provided by Eq. 16,

  

µb ≥ 1
tanθ

= 0.258
θ = 75.52o Eq. 19

5. Because the “no slip” base friction µ
b
 given in Eq. 16 does

not depend on the magnitude of the applied weights, vari-
ous climbing tricks are available:

Trick #1: If the ladder stands under its own weight, it has
sufficient friction µ

b
 to support a climber at least up to the

location of the ladder’s center of gravity, (  al  
/L).  Without a

climber, Eq. 17 describes the normalized center of force
( a /L ) as

  

a

L

a

L

W

W

a

L

a

L

c



 = 








 + 










= 





0

W
l

l

With a climber located at 
  

ac

L




 = al

L




 , Eq. 17 shows that

  

a

L




 = Wc

W






al

L




 + Wl

W






al

L






= al

L






Wc + Wl

W






= al

L






Thus, the center of force is the same and the free standing
ladder has proof tested the system up to (  al  

/L).  No infor-
mation is provided for climbs above the ladder’s center of
gravity.

It should be noted that all falls resulting from ladder “slide
out” drop the climber from a height at least equal to   al sinθ .
Not very nice!

Trick #2:  Pulling down on a rope tied to the top of the
ladder before climbing, proof tests the ladder and assures
that ladder sliding will never occur.  Insufficient friction is
revealed when the ladder comes crashing down during the
pull test (watch your head!).

Trick #3:  When descending a ladder whose “slide out” in-
tegrity is unknown, pushing down on the top rung from a
stable perch will proof test the ladder set up.

C. First Incipient Slipping at Wall

The assumption of incipient wall slip, Vt = Htµ t , provides
the “fourth equation” that allows the four reaction forces to be
uniquely determined.  These are shown in Table I, column c,
together with the associated “no slip” criterion.

Observations

1.  The three reactions, V
t 
, H

t 
, and H

b
 are all proportional to the

center of force location ( a /L ).  Consequently, they achieve

(ladder center of gravity)

(ladder center of gravity)

(ladder center of gravity)

(location of climber)

Eq. 18a



6

their maximum values when ( a /L) is as large as possible.
Choosing ( a /L ) = 1  bounds these reactions.

2.  In the case of the vertical base reaction, V
b
, its maximum

value is achieved when the center of force is as small as
possible.  We have shown that ( a /L ) is never zero; never-
theless, it is useful to bound V

b
 by taking ( a /L ) = 0 in Eq.

5c; thus, V
b 
= W (upper bound).

3. When P = 0, all four reactions are proportional to W, the
total gravity loading.

4.  The most important finding in this “wall first” case is the
expression for the “no slip” criterion.  Rearranging the terms
given in Eq. 8c for P = 0, we obtain,

µb ≥

a

L






µ t 1 − a

L












+ tanθ

This same expression is obtained in every other case stud-
ied.  Observe that when the wall friction is negligible, µ

t
 = 0,

Eq. 20 reduces to the “Roller Top”  case given by Eq. 8b.
Indeed, all the reactions described by Eqs. 4c, 5c, 6c, and
7c reduce to those given by Eqs. 4b, 5b, 6b, and 7b for the
“Roller Top” case.

5.  When choosing a safe base friction for general climbing,
the largest possible value for the center of force must be
taken.  Notice that the numerator in Eq. 20 is largest and
the denominator smallest when ( a /L) is maximized.  It is
always conservative to take ( a /L) as unity.  This leads to
the important result that the wall friction plays no role in the
selection of a general climbing “no slip” criterion; note that

µ t 1 − a

L












= 0      when 
a

L




 = 1.

Hence, we obtain

µ
θb ≥ 1

tan

which is exactly the result shown in Eq. 19 for the “Roller
Top” case.

6.  The onset of incipient wall slip cannot be detected; conse-
quently, the reactions should be thought of as one possible
set of forces.  Since they may indeed be realized from time
to time, the structural integrity of ladders and any associ-
ated appliances must take these reactions into account.

7.  In terms of “slip out,” heavy ladders are safer than light
ones when used in general climbing service.  The center of
the gravity forces is biased toward the ladder’s center of
gravity which leads to a smaller ( a /L )when the climber is
at the top.  Eq. 20 indicates that a smaller µ

b
 is required to

stabilize a ladder with a reduced ( a /L ).  If we increase the
weight of a ladder proportionally to   αWl  where α >1, Eq.
17 may be used to compare the original and enhanced lad-
der when the climber is at the top, a

c 
 /L =1.  To show that

  

a

L

W

W W

W

W W

a

L

W

W W

W

W W

a

L

a

L

heavy

c

c c

c

c c

light





 =

+






+
+










 <

+






+
+







= 





α
α

αl

l

l

l

l

l

l

l

we solve for the α that makes the inequality hold.  This turns
out after manipulation to be

α > 1.

This, of course, is our definition of an enhanced ladder.

D. First Incipient Slip at Base

If incipient slipping occurs first at the base, this assumption
furnishes the “fourth equation” required to determine the reac-
tions and the “no slip” criterion, i.e., H

b
 = V

b 
µ

b
.  The results are

described either by Eqs. A16 and A19 or by those shown in
Table I, column e.

Observations

1. The formulas for the “base first” reactions are different than
those for “wall first” or “Roller Top.”

2.  In spite of the differences in the reactions, the “no slip”
criterion is identical for the “wall first” and “base first”
cases.

3.  Why would anyone care whether incipient slipping occurs
first at the wall or at the base?  If one is interested in the
reaction forces, one must care!  As a climber ascends a
ladder the random reaction forces given in Table I, column
(a) may lead to a condition of incipient sliding at either the
wall or the base.  Whichever is realized first, the associated
reaction formulas prevail until “slip out” occurs upon fur-
ther climbing.

4.  Incipient slipping can only occur on stable ladders, i.e.,
µ

b ≥ Ω.  The “base first” model is valid under the condition
reflected by Eq. A17 where P = 0.  Consequently, the range
of µ

b
 where incipient slipping may first appear at the base is

Ω P = 0 =

a

L






µ t 1 − a

L












+ tanθ
≤ µb ≤

a

L






tanθ

Observe that when the center of force is at the bottom of
the ladder, ( a /L ) = 0, both bounds are equal to zero and
therefore µ

b
 = 0.  Here, all the reactions disappear except

V
b
 = W.

At the other extreme when the center of force is at the top,
( a /L )=1, both bounds become (1/tan θ) ; hence, µ

b 
= 1/tanθ.

... no slip criterion Eq. 20

...no slip criterion

,

Eq. 21
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We have proven in the Appendix (Section E) that the “wall
first” and “base first” reactions are identical when µb = Ω
as we find here.

The largest differences between the “base first” and “wall
first” reactions are found at the maximum difference be-
tween the two bounds in Eq. 21.  Denoting this difference
by Ψ , we find

Ψ ≡







−







− 











+

a

L

a

L
a

Lt
tan

tan
θ µ θ1

      Eq. 22

To find the optimum ( a /L ) to maximize Ψ , we set the de-
rivative of Ψ  equal to zero; thus,

d

a

L

tΨ
θ

µ θ

µ θd
a

L t







= − +

− 











+










=1

1

0
2tan

tan

tan

Solving for ( a /L )
opt

 we obtain

a

L




 opt

= 1 + tan θ
µ t







− tanθ
µ t







2

+ tanθ
µ t





     Eq. 24

Taking an example using θ = θ∗ and µ
t
=0.3, Eq. 24 becomes,

a

L opt





 = + 



 − 



 + 



 =1

5 52

0 3

75 52

0 3

75 52

0 3
0 50933

2tan .

.

tan .

.

tan .

.
.

7

The two bounds in Eq. 21 may be evaluated for ( a /L )
opt 

;
hence,

0 50933

0 3 1 0 50933 75 52

0 50933

75 52

.

. . tan .

.

tan .−[ ] +
≤ ≤µb

                     0 12671 0 13153. .≤ ≤µb  Eq. 25

The maximum difference is small, i.e., Ψmax = 0.004816 .
Taking ( a /L ) = 0.50933 and the two bounds on µ

b
 given in

Eq. 25, we may compute the “base first” and “wall first”
reaction sets shown in Table II.

One observes from Table II a sizable difference between
the upper and lower bounds on V

t 
; all the other reactions

are close.

5.   When the base friction µ
b
 is larger than[( a /L )/ tan θ] , incipi-

ent slipping cannot first appear at the base.  Since µ
b
 is

normally selected for general climbing, safety demands that
µ

b
 exceed 1/ tan θ.  Under these circumstances, real lad-

ders, which always have ( a /L ) < 1, will never experience
“base first” incipient slipping.

E. Simultaneous Incipient Slipping at Wall and Base

In addition to the three equilibrium equations, “simultaneity”
imposes two more equations; H

b
 = V

b 
µ

b
 and V

t
 = H

t 
µ

t
.  Too

many requirements generally preclude a solution which in the
present case means that the four reactions cannot be found.
Here, however, a very narrow exception arises when the base
friction µ

b
 is exactly equal to Ω .

Observations

1.  When µb< Ω, the ladder is unstable and experiences “slip
out.”

2. When µb >Ω, the ladder is stable, but simultaneous incipi-
ent sliding at the wall and base is impossible.

3. Only when µb= Ω do we achieve both stability and simulta-
neous incipient behavior.  In this case the reaction forces
may be calculated from either the “wall first” or the “base
first” equations found in Table I, columns (c) or (e).

4.  Simultaneous incipient slipping will occur when a climber
on a weightless ladder ascends to the location (a

c 
 /L ) given

by either Eq. A23 or A25 when P = 0; thus,

ac

L




 =

µb µ t + tan θ( )
1 + µbµ t

Eq. 26

Attempts to descend this ladder from the top will result in
immediate disaster since µ

b
 must be greater than Ω  for the

ladder to be stable when (a
c 
/L ) is greater than the value

given by Eq. 26.

III. Ladder Testing – Foot Slip

The stability of ladders relative to “slip out” is established in
this country using testing protocols defined by various Ameri-
can National Standards.  The relationship between testing and
analysis is explored in this section.

Figure 4, taken from ANSI A14.2 – (1982 or 1990), depicts
the basic setup and criteria associated with the so called de-
sign verification test for foot slip.  The test protocol is highly
standardized; the test unit is a fully extended 16 foot extension
ladder (L = 13ft.) operating on the A surfaces of A-C plywood
wall and base panels which are presanded using 320 fine wet /
dry sandpaper.  A vertical test load (dead load: W

d 
) is applied

on the third highest fly rung and a horizontal pulling force (P) is
Table II  Reaction Forces; θ =75.52º and ( a /L)

opt 
= 0.50933

Eq. 23

Reactions

V
t
 =

V
b
 =

H
t
 =

H
b
 =

“Base First”

“Wall First”

Lower Bound
µ

b 
= 0.12671

0.03666 W

0.96334 W

0.12207 W

0.12207 W

   Eq. A16   or

   Eq. A12

Upper Bound
µ

b
 = 0.13153

0

W

0.13153 W

0.13153 W

   Eq. A16

 ––––
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statically applied at the base as shown in Fig. 4.  The stan-
dards call for Go/No-Go tests for each of the four ladder types
where both W

d
  and P are specified and where passage re-

quires that no movement across the base exceeds 1/4 inch.

It should be noted that the pulling force P provides a means
for imposing a safety factor on the design of a ladder.  Extra
base friction, over and above that needed for climbing, is re-
quired to resist P which may be set by rule makers to account
for variability in friction measurements, static vs. dynamic fric-
tion, differences in operating surfaces, errors in choosing the
inclination angle θ and other types of ladder misuse.  The use-
fulness of P as a safety parameter derives from the strict stan-
dardization of the testing protocol.  Observe that a minimum
value of µ

b
 may be associated with any value P through the

strict equality of Eq. 2 which is rewritten as,

µb =
µ t + tanθ( ) P

W
+ a

L






µ t 1 − a

L












+ tanθ

The minimum coefficient of base friction is a more useful con-
cept than P for designers who must choose a satisfactory fric-
tion material for the ladder foot pads.

Another important expression of a safety factor is the mini-
mum inclination angle that a ladder may be safely erected.  This
angle may also be established using Eq. 27.  To illustrate these
various ideas, an example has been selected that involves four
different ladder types of 16-foot aluminum extension ladders
of uniform width and equal length sections.  Their characteris-
tics are tabulated in Table III in lines 1 through 5 where different
weights are associated with the base and fly sections and where
their normalized centers of gravity are located at (a

1 
 /L ) =4/13

and (a
2  

/L ) = 9/13 respectively.  In each case considered, the
test load W

d 
 shown in lines 9 and 13 of Table III is located 2.5

feet from the top of the ladder or at (a
d   

/L ) = (11.5)/13.  Equation
3 is used to compute the center of force ( a /L ) associated with
the footslip test, e.g.,

a

L




 = Wd

W






ad

L




 + W1

W






a1

L




 + W2

W






a2

L






= 300
328







11.5
13





 + 15

328






4
13





 + 13

328






9
13







= 0.85061

Using the W
d
 and P given by ANSI A14.2 –1982, lines 9 and 10

in Table III, together with µ
t
 = 0.3 and θ

 
= 75.52  ̊, the associated

base friction becomes:

Fig. 4   ANSI A14.2 Foot Slip Test

NOTES:
(1) The grain of the plywood shall be parallel to the direction of loading;

the grain on the vertical sheet under the upper end of the fly section shall run
in a vertical direction, and the grain on the horizontal sheet under the base
section shall be parallel to the direction of the test load.

(2) The dead load shall be applied on the third highest rung.
(3) The angle of inclination shall be 75-1/2º, except that for combination

ladders in the extension-ladder orientation a slightly modified angle shall be
used so that the tread portions of the steps are horizontal (level).

Eq. 27
(Type I A  - line 7, Table III)

ANSI A14.2 – 1982

Duty Rating and Type

Extra heavy duty – Type IA
Heavy duty – Type I
Medium duty – Type II
Light duty – Type III

Test Load*
(pounds)

300
250
225
200

Horizontal
Pulling Force

(pounds)

50
50
50
50

* This load is applied on the third highest fly rung.

ANSI A14.2 – 1990

Duty Rating and Type

Extra heavy duty – Type IA
Heavy duty – Type I
Medium duty – Type II
Light duty – Type III

Test Load*
(pounds)

300
250
225
200

Horizontal
Pulling Force

(pounds)

14
18
20
22

* This load is applied on the third highest fly rung.

Eq. 28

A - C PLYWOOD SURFACE
         (NOTE 1) 

DEAD LOAD
(NOTE 2)

ANGLE OF
INCLINATION
(NOTE 3)

A - C PLYWOOD 
SURFACE
 (NOTE 1) 

TEST
LOAD

1 in

MOVEMENT
( 1  in MAX)
4
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µb =
+( ) +

−( ) +

0 3 75 52
50

328
0 85061

0 3 1 0 85061 75 52

. tan . .

. . tan .

= 0 3795.

This value of µb may now be used to establish the minimum
safe ladder angle for a 200 lb. climber critically located at the
top of the ladder, (a

c 
/L ) = 1.  The associated ( a /L ) for the

climbing scenario is calculated from,

a

L

W

W

W

W

a

L

W

W

a

L
c



 = 



( ) + 








 + 








1 1 1 2 2

= + 








 + 










200

228

15

228

4

13

13

228

9

13

= 0 93691.

Solving Eq. 27 for θ
  
when P = 0, we obtain,

Min Safe

a

L b t

b
t. θ =

µ µ

µ
µtan−





 +( )








−










1
1

=
+ ( )( )[ ] −










−tan

. . .

.
.1 0 936911 0 3795 0 3

0 3795
0 3

= 67 80. º

All of the parameters, code requirements, and calculations are
summarized and tabulated in Table III.

Table III  Aluminum Extension Ladders – Length: 16 feet

(Type I A - line 12, Table III)

(Type I A - line 11, Table III)

(Type I A - line 8, Table III)

Eq. 30

Duty Rating Type

1. Base Weight: W
1
 (lbs.)

2. Fly Weight: W
2
 (lbs.)

3. Ladder Weight (lbs.)

4. (a
1 
/L)

5. (a
2 
/L)

6. (a
d 
/L)

7. Foot Slip Test: (a /L)

8. Critical Climb: (a /L)

9. Test Load: W
d
 (lbs.)

10. Pulling Force: P (lbs.)

11. Base Friction: µ
b

12. Minimum Safe θ

13. Test Load: W
d
 (lbs.)

14. Pulling Force: P (lbs.)

15. Base Friction: µ
b

16. Minimum Safe θ

Extra Heavy Duty
Type I A

15

13

28

4/13

9/13

11.5/13

0.85061

0.93691

300

50

0.3795

67.80º

300

14

0.2626

74.26º

Heavy Duty
Type I

14

12

26

4/13

9/13

11.5/13

0.84699

0.94078

250

50

0.4091

66.34º

250

18

0.2856

73.03º

Medium Duty
Type II

13

11

24

4/13

9/13

11.5/13

0.84600

0.94471

225

50

0.4297

65.38º

225

20

0.3014

72.22º

Light Duty
Type III

12

10

22

4/13

9/13

11.5/13

0.84477

0.94872

200

50

0.4554

64.19º

200

22

0.3211

71.21º

ANSI A14.2 – 1982

ANSI A14.2 – 1990

Eq. 29
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Observations

1.  The friction levels required to just satisfy the ANSI A14.2–
1982 standard are found on line 11, Table III (0.3795, 0.4091,
0.4297, 0.4554).  These friction coefficients are easy to ob-
tain on most surfaces; almost all footwear will achieve fric-
tion levels of 0.5 or greater.  Associated with these mini-
mum friction values are the “minimum safe angles of incli-
nation” shown on line 12, Table III (67.80º, 66.34º, 65.38º,
64.19º).

These angles are very forgiving when compared to the
manufacturer's instructions and the ladder safety standards,
θ

  
= 75.52 .̊ A 1977 study by Liberty Mutual Insurance Com-

pany  [1] revealed that the preferred mean angle of ladder
inclination among homeowners and carpenters was 73º for
24-foot, 32-foot, and 40-foot aluminum extension ladders.
These studies showed a deviation for a 16-foot ladder; the
mean was 68.7º which is still above our highest minimum
safe angle of 67.8º.  The twenty two participants in the study
were simply trying to use the most appropriate and com-
fortable angle for performing a painting task; they had no
knowledge of the ANSI recommendation of 75.52° or of
any standardized method for determining the angle.

2.    It may be observed from line 14, Table III that ANSI A14.2 –
1990 calls for much lower pull forces P than in 1982.  This
silliness is the result of a printing error in the 1990 stan-

dard; the pull criterion never changed [4].  This paper, nev-
ertheless, explores the consequences of the erroneous low
level pull forces to illustrate how they lead to very small
safety factors on the minimum safe inclination angles.  The
fictitious pull forces are shown on line 14, Table III. The as-
sociated base friction coefficients given in line 15 (0.2626,
0.2856, 0.3014, 0.3211) are very modest and lead to the
minimum safe angles shown on line 16 (74.26º, 73.03º,
72.22º, 71.21º). The minimum safe angles are very close to
75.52°.  They are unforgiving and demand great precision
in setting the recommended angle of inclination.

3.   Can ladders be safely set up without recourse to standard-
ized methods for choosing the inclination angle?  This ques-
tion is equivalent to “can a safe µ

b
 be selected when intu-

ition is used to establish the ladder angle?”  According to
the findings of Ref. [1], for 16-foot aluminum extension lad-
ders the intuitive methods of homeowners gave rise to a
mean setup angle of 68.25º with a standard deviation sigma
of σ = 3.86º.  Assuming a normal frequency distribution,
99.7% of the angles θ selected by intuition will fall in the
range,

Mean - 3 σ < θ  ≤ Mean + 3 σ
or,

       56.67º ≤ θ  ≤ 79.83º

Using a Type III  aluminum extension ladder, the required
safe µ

b
 at the lower limit for a 200 lb. climber may be  found

Table V  Effect of Wall Friction on Computed Base Friction
(ANSI A14.2 – 1990, Type III , ( a /L) = 0.84477, θ = 75.52º)

Table IV  Effect of Wall Friction on  Climbing Stability
(Type IA, W

c
 = 200 lbs., ( a /L) = 0.93691, θ = 75.52º)

Wall Friction
µ

t

0

.1

.2

.3

.4

.5

.6

.7

.8

.9

1.0

Stable Base
Friction µ

b

0.2420

0.2416

0.2412

0.2408

0.2404

0.2400

0.2396

0.2392

0.2388

0.2385

0.2381

0.509%

0.342%

0.176%

Assumption

-0.156%

-0.322%

-0.488%

-0.654%

-0.821%

-0.945%

-1.111%

µ b = 0.93691

µ t 1 − 0.93691[ ] + tan 75.52

Error =
µb − 0 2408

0 2408

.

.
Computed Base

Friction µ
b

0.3173

0.3185

0.3198

0.3211

0.3223

0.3236

0.3248

0.3260

0.3272

0.3284

0.3296

-1.175%

-0.801%

-0.397%

Assumption

0.382%

0.787%

1.161%

1.534%

1.908%

2.282%

2.656%

µ b =
µ t + tan 75.52( ) 22

222
+ 0.84477

µ t 1 − 0.84477[ ] + tan 75.52

Wall Friction
µ

t

0

.1

.2

.3

.4

.5

.6

.7

.8

.9

1.0

Error =
µb − 0 3211

0 3211

.

.
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from Eq. 27 with P = 0, (a /L ) = 0.94872 from line 8, Table III
and µ t = 0.3; thus,

  

µb = 0.94872

0.3 1 − 0.94872( ) + tan 56.67o

= 0.6177

To be conservative, this value of µ
b
 should be treated as

sliding friction; static friction may easily be 15% greater.
On this basis the foot pad material must be selected to
give

µb = 1.15 X (0.6177) = 0.7104 (static)

on arbitrary surfaces where a ladder may be erected.  These
surfaces may, of course, be dirty, wet, or oily.

At present, no pad materials exist that will meet this de-
mand where intuition prevails in the selection of θ.  On the
other hand, when θ

 
= 75.52  ̊is used, the safe µ

b
 under the

preceeding assumptions is only µ
b
 = 0.28.

4.  What is the role of wall friction on the stability of ladders?
Throughout this paper it has been assumed in all computa-
tions that µ

t
 = 0.3.  It will now be shown that stability is

relatively insensitive to µ
t
.

Under general climbing scenarios ( a /L ) must be maximized
to produce the minimum required µ

b
.  Referring to Eq. 27

when P = 0, we observe that as ( a /L ) approaches unity, µ
t

is multiplied by the bracketed quantity which approaches

zero.  Consider a Type I A aluminum extension ladder sup-
porting a 200 lb. climber located at the top of the ladder.
Here the critical ( a /L ) = 0.93691 is shown in line 8, Table III.
Using this value and θ

  
= 75.52 ,̊ µ

b
 is calculated for values of

µ
t
 between zero and unity and the results are tabulated in

Table IV.  As shown in this table, when the wall friction is
assumed to be µ

t
 = 0.3 the error in determining a safe µ

b
 is

less than 1%.  The influence of wall friction is seen to be de
minimus.

5. Despite the fact that the ANSI standard outlines a Go/No-
Go test for slip out, the procedure may be made quantita-
tive [2] by continuously increasing P until sliding begins.
The maximum pulling force Pmax  is substituted into Eq. 27
to determine the base friction µ

b
.  The wall friction may be

independently measured using the contact hardware at the
top of the ladder and the wall surface material.

Very little is gained by measuring µ
t
 since it may be ap-

proximated as µ
t
 = 0.3 without exerting much influence on

the determination of the base friction.  Taking, for example,
a 22 lb., Type III , aluminum extension ladder under the stan-
dard foot slip setup conditions, we can calculate µ

b
 using

Eq. 27 for various values of µ
t
 in the range of zero to unity.

Adopting the ANSI A14.2 – 1990 protocol where ( a /L ) =
0.84477 from line 7, Table III, the values of µ

b
 are tabulated

in Table V.  It may be observed that µ
b
 varies less than 1%

for µ
t
 in the neighborhood of µ

t
 = 0.3. In the view of this

relative insensitivity, it may not be necessary to be so ex-
acting in the specification of wall materials for the ANSI
foot slip test protocol.
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A. Equilibrium

When a ladder is stationary the forces shown in the free body
diagram depicted in Fig. 2b can be related by three equilibrium
equations as follows:

Moment Equilibrium About Ladder Base:

Ht L sinθ + Vt L cos θ − Wi

i=1

n

∑ ai cos θ = 0             Eq. A1

Vertical Equilibrium:

Vt + Vb − Wi

i=1

n

∑ = 0        Eq. A2

Horizontal Equilibrium:

Ht − Hb + P = 0        Eq. A3

These equations may be solved for V
t 
, V

b
, and H

t
 in terms con-

taining only the unknown reaction H
b
; thus,

V W
a

L
H Pt i

i

n
i

b= 



 − +

=
∑

1

tan tanθ θ Eq. A4

V W
a

L
H Pb i

i

n
i

b= −



 + −

=
∑

1

1 tan tanθ θ Eq. A5

Ht = Hb − P        Eq. A6

B. Model Validity

The ladder support surfaces can only resist compression; if
tension is required to maintain equilibrium the ladder would lift
off the supports.  Consequently, the model assumed in Fig. 2 is
invalid if H

t
 < 0 or V

b
 < 0.

The shear reactions V
t
 and H

b
 are developed through friction

which always resists incipient or real motion.  During slide out,
the directions of frictional resistance shown in Fig. 2b for V

t

and H
b
 must be achieved.  Any assumptions or conditions that

lead to negative values for these reactions will invalidate the
model; thus, validity demands that V

t
 ≥ 0 and H

b
 ≥ 0.

C. Top Roller (Frictionless Wall)

To minimize scratching of the support walls, ladders some-
times incorporate rollers into the top of the siderails.  This case
is a favorite textbook example modelled as a frictionless wall,
µ

t
 = 0, where no vertical reaction can be sustained, i.e.,

V
t
 = 0       Eq. A7

This equation taken together with the three equilibrium equa-
tions, A4, A5, and A6, uniquely determine the four reactions:

 V
t
 = 0      Eq. A8a

Vb = Wi

i=1

n

∑ ≡ W      Eq. A8b

H
W W

W

a

L
Pb

i i

i

n

= 








 +

=
∑tanθ

1
     Eq. A8c

H
W W

W

a

Lt
i i

i

n

= 










=
∑tanθ

1
Eq. A8d

As long as the ladder remains stationary these reaction forces
remain valid.

The ladder will cease to be in equilibrium when the horizontal
base reaction H

b
 exceeds the frictional resistance of the ladder

feet given by the product of the normal base reaction V
b
 and

the coefficient of friction between the floor surface and the lad-
der feet, µb.  Consequently, a “no slip” criterion  becomes,

Hb ≤ Vbµb        Eq. A9

Substituting from Eqs. A8b and A8c, we obtain

W W

W

a

L
P Wi i

i

n

btanθ
µ








 + ≤

=
∑

1

or,

µ
θb

i i

i

n W

W

a

L

P

W
≥ 








 +

=
∑1

1
tan

It may be noted that the following normalized and dimen-
sionless expression gives the ith gravity force as a fraction of
the total gravity force W,

Wi

W




 , i = 1,2,...n

The expression,

ai

L




 , i = 1,2,...n

is the normalized and dimensionless location of the ith  gravity
force W

i 
; it is expressed as a fraction of the ladder length mea-

sured from the base.  The set (W
i 
, a

i 
) gives the load distribution

on the ladder.  When P = 0, the case of ordinary climbing, we
observe that Eq. A10 indicates that the µb required for stability
is independent of the weight on the ladder; it depends only on
the weight distribution.

...no slip criterion

...no slip criterion

APPENDIX

Eq. A10
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D. First Incipient Slipping at Wall

If it is assumed that the incipient slipping appears first at the
wall, we may write the vertical reaction V

t
 as the product of the

normal wall force H
t
 and the coefficient of friction µ

t
 between

the wall and the top of the ladder.  With this “fourth equation”,
the four reaction forces are uniquely determined using  Eqs.
A4, A5, and A6; thus,

Vt = Htµ t      Eq. A11

or,

W
a

L
H P H Pi

i

n
i

b b t

=
∑ 



 − + = −( )

1

tan tanθ θ µ

Manipulation provides,

H P W

W

W

a

L
b

i i

i

n

t

= +












( )
=
∑

1

µ θtan

H W

W

W

a

L
t

i i

i

n

t

=












( )
=
∑

1

µ θtan

V W

W

W

a

L
b

t
i i

i

n

=

− 






















+

+( )
=
∑µ θ

µ θ

1
1

tan

tant

V W

W

W

a

L
t t

i i

i

n

t

=













+( )
=
∑

µ
µ θ
1

tan

These reaction forces prevail until the base slides, i.e.,
H

b
 > V

b
 µ

b
.  Consequently, the “no slip” criterion becomes,

Hb ≤ Vbµb

or,

P W

W

W

a

L
W

W

W

a

L
i i

i

n

t
b

t
i i

i

n

t

+












+( ) ≤

− 






















+

+( )
= =
∑ ∑

1 1

1

µ θ
µ

µ θ

µ θtan

tan

tan

Thus,

µ
µ θ

µ θ
b

t
i

i

n
i

t
i

i

n
i

P

W

W

W

a

L

W

W

a

L

≥

+( ) + 










− 






















+

≡=

=

∑

∑

tan

tan

1

1

1

Ω

E. First Incipient Slipping at Base

If the base is first to achieve incipient sliding, the “fourth
equation” to be used in conjunction with the three equilibrium
equations to uniquely establish the four reaction forces is

Hb = Vbµb .      Eq. A15

Using Eq. A5 this becomes, after rearranging,

Hb 1 − µb tan θ( ) = Wi

i=1

n

∑ 1 − ai

L




 − P tanθ












µb

If 1 − µb tan θ( ) ≠ 0 ,

H

W
W

W

a

L
P

b b

i i

i

n

b

=

− 






















−

−( )
=
∑

µ

θ

µ θ

1

1
1

tan

tan
        Eq. A16a

H

W
W

W

a

L
P

t

b
i i

i

n

b

=

− 






















−

−( )
=
∑µ

µ θ

1

1
1

tan
Eq. A16b

 V

W
W

W

a

L
P

b

i i

i

n

b

=

− 






















−

−( )
=
∑1

1
1

tan

tan

θ

µ θ
   Eq. A16c

     V
W

W

W

a

L
P

t

i i

i

n

b

b

=










 −













+

−( )
=
∑

1

1

µ θ θ

µ θ

tan tan

tan

The validity of the “base first” model, when P = 0, requires that
these reactions be nonnegative.   The numerators in the formu-
las for H

b
, H

t
, and V

b
 are all nonnegative; the denominators will

be positive if (1 - µ
b
tanθ) > 0.  If V

t
 is to be nonnegative, the

quantity in brackets shown in Eq. A16d must be nonnegative,
i.e.,

Wi

W






ai

L




 − µb tan θ

i=1

n

∑












≥ 0

This equation implies that 1 − µb tan θ( )  will always be posi-

tive.  Observe that for real ladders,

1 − µb tan θ( ) > Wi

W






ai

L




 − µb tan θ

i=1

n

∑












≥ 0

Thus, the model will be valid if and only if

µ
θ θb

i

i

n
iW

W

a

L
≤












<=
∑

1 1

tan tan
    Eq. A17

For the ladder to begin sliding the top must slip downward
which implies that the V

t
 exceeds the frictional resistance H

t 
µ

t
.

The “no slip” criterion becomes

Vt ≤ Htµ t

...no slip criterion

...no slip criterion

Eq. A16d

Eq. A18

Eq. A14

Eq. A12a

Eq. A12b

Eq. A12c

Eq. A12d

Eq. A13

...no slip criterion
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Substituting from Eq. A16 gives,

W
W

W

a

L
P W

W

W

a

L
Pi

i

n
i

b

b
t

b
i

i

n
i

b










 −













+

−( ) ≤

− 






















−

−( )
= =
∑ ∑

1 1

1

1

1

µ θ θ

µ θ
µ

µ

µ θ

tan tan

tan tan

Because 1 − µb tan θ( ) > 0 ,

µ Ωb ≥  Eq. A19

We observe that Eq. A19 is identical to the “no slip” criterion,
Eq. A14, where incipient slipping begins at the wall.  On the
other hand,  the “base first” reactions given by Eq. A16 are
different than the “wall first” reactions described by Eq. A12.
When the equality sign holds in Eqs. A14 and A19, the reac-
tions are identical in the “base first” and “wall first” cases.  This
may readily be seen by equating any of the reactions given by
Eqs. A12 and A16 and solving for µ

b
.  For example, using V

t
 we

obtain,

W

W

W

a

L
W

W

W

a

L
P

t

i i

i

n

t

i i
b

i

n

µ
µ θ

µ θ θ

− µ θ













+( ) =











 −













+
= =
∑ ∑

1 1

tan

tan tan

tan1 b

Solving for µ
b
  gives,

µb = Ω

F. Simultaneous Incipient Slipping at Wall and Base

This case rounds out our study of “slip out” since we have
progressed from too little information to just the right amount
and now to too much information.  Simultaneous incipient slip-
ping at the wall and base produces two equations  in addition
to the three from equilibrium; thus, we have five equations to
determine four unknown reactions.  In general, this implies that
a solution for the reaction forces does not exist.  There is one
exception however, and this is demonstrated in the following
development.

Because incipient slipping takes place at the wall, V
t
 = H

t 
µ

t
.

Consequently, the reactions must be the same as those de-
veloped for the “wall first” case, Eq. A12.  Now, we add the
fact that incipient slipping at the base occurs simultaneously,
H

b
 = V

b 
µ

b
.  Substituting H

b
 and V

b
 from Eqs. A12a and A12c

into this equation we obtain,

µb = Ω     Eq. A21

Note that in the “wall first” case an identical substitution was
made, albeit for a different reason, using the inequality
H

b
 ≥ V

b 
 µ

b
 in contrast to the present case using the equal sign.

The strict equality of Eq. A21 indicates that simultaneous
achievement of incipient slip at the wall and base cannot occur
except in one special case where the loading produces a criti-
cal value of the center of gravity forces.  Solving Eq. A21 we
find

       
W

W

a

L

P

Wi i

i

n

critical

b b

b t
























=
−



 +( )
+=

∑
1

1

µ µ θ

µ µ

tan

Eq. A22

When all the gravity loads are known except for the location a
c

of a single climber of weight W
c
, we may write the bracketed

quantity as

   
W

W

a

L

W

W

a

L
c c i

i
i c

n
i








 + 










=
≠

∑
1

Using this representation, Eq. A22 may be solved for the criti-
cal location (a

c 
/L),

a

L W

W

P

W W

W

a

L
c

c

b t

b t

i i

i
i c

n




 =

























−



 +( )

− 




























=
≠

∑1

1

µ µ θ

µ µ

tan

1 +

     Eq.A23

Another approach to the case of simultaneous incipient slip-
ping is described by Timoshenko [3] who uses a graphic method
that takes advantage of the known directions of the wall and
base reactions at incipient slip.  Referring to Fig. 5, the so called
friction angles α and β are defined as

tan α = µb   Eq. A24a

tanβ = µ t   Eq. A24b

At incipient slip, these angles define the orientation of the re-
spective base and wall reaction resultants, R

b
 and R

t
.  From

...no slip criterion

Fig. 5  Timoshenko’s Graphic Solution

R
b

V
b

µ
b
V

b

W
c

H
t

R
tt 

H
t

β

β
B

D

α

α

θ

C

E

α

a
c

µ

Eq. A20a

Eq. A20b
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statics we know that equilibrium requires that three nonparallel
forces pass through a single point; in Fig. 5 point C is the inter-
section of the load path for W

c
 and the resultant paths for R

b

and R
t
.  This, of course, immediately defines a unique a

c
.  If the

drawing in Fig. 5 is constructed to scale, a
c
 may be measured

directly.  Otherwise a
c 
 may be computed using the following

relationships:

From geometry,

BD = BC cosβ

BD = L cos θ − ac cos θ

From the Law of Sines (triangle BCE),

BC

sin 90 − θ + α( )[ ] = L

sin 90 − β + α[ ]

Solving these three equations gives,

a

L
c



 = −

+( )
−( )













1
cos cos

cos cos

α θ β
α β θ Eq. A25

The following observations are useful:

1. When the base is frictionless, α = 0, (a
c 
/L) = 0  and a climber

cannot ascend.

2. If the ladder angle is θ = 90 - α, the base reaction resultant
R

b
 lines up with the side rails and (a

c 
/L) = 1 allowing the

climber to ascend to the top of the ladder.

3. If the definitions of α and β from Eq. A24 are substituted
into Eq. A25, one recaptures the expression given by Eq.
A22 for the center of force when P = 0.
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